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ABSTRACT  

Background: Extended-spectrum β-lactamase (ESBL)-producing Proteus 

species, particularly Proteus mirabilis, are increasingly linked to drug-resistant 

illnesses. The blaCTX-M gene is one of the most common ESBL genes 

worldwide, imparting resistance to third-generation cephalosporins. Early 

detection of blaCTX-M is crucial for successful treatment and infection 

prevention. Materials and Methods: A cross-sectional study was conducted 

from December 2015 to August 2016 at Tirunelveli Medical College, Tamil 

Nadu, India. From 1124 clinical specimens, 100 Proteus isolates were 

identified, of which 53 were phenotypically confirmed as ESBL producers. 

Molecular detection of the blaCTX-M gene was performed using Real-Time 

PCR. Phenotypic tests—Combined Disc Test (CDT), Double Disc Synergy 

Test (DDST), and E-Test—were evaluated against PCR results. Demographic, 

clinical, and risk factor data were collected and analyzed. Result: Out of 53 

ESBL-producing isolates, 48 (90.5%) were positive for the blaCTX-Mgene. P. 

mirabilis accounted for 60.4% of ESBL isolates. The highest ESBL prevalence 

was in the 46–60 age group (37.7%). The E-Test showed the best agreement 

with PCR (sensitivity 98%, specificity 100%). CDT demonstrated 96% 

sensitivity and 80% specificity, while DDST had lower sensitivity (69.8%). 

UTIs (43.3%) were the most common ESBL-associated infections. 

Catheterization (78.2%), prolonged hospital stay (≥15 days, 75.5%), and prior 

cephalosporin use (94.3%) were significantly associated with ESBL positivity 

(p < 0.05). Conclusion: The study confirms the high prevalence of the 

blaCTX-M gene among ESBL-producing Proteus isolates in a tertiary care 

setting. Real-Time PCR proved effective for rapid detection. The strong 

association of ESBL with catheterization, extended hospital stay, and 

cephalosporin use highlights the need for improved antibiotic stewardship and 

infection control measures. 

 
 

 

INTRODUCTION 
 

The genus Proteus, a member of the 

Enterobacteriaceae family, is made up of Gram-

negative, motile, facultative anaerobic bacteria.[1] 

These creatures are found throughout nature, 

including soil, water, and the gastrointestinal tracts 

of humans and animals.[2] Proteus mirabilis is the 

most clinically relevant species, accounting for 

roughly 90% of all Proteus infections.[3,4] These 

infections are very frequent in the urinary tract, 

particularly among individuals who have indwelling 

catheters or urinary structural abnormalities.[5,6] 

Proteus species are pathogenic because they 

generate the enzyme urease, which hydrolyzes urea 

into ammonia and carbon dioxide. This process 

raises the alkalinity of urine, resulting in the 

production of struvite stones.[7,8] The ensuing calculi 

can clog the urinary tract, leading to persistent and 

recurring infections and complicating therapy.[9] 

Furthermore, Proteus infections are not confined to 

the urinary system; they can also cause wound 

infections,[10] bacteremia,[11] pneumonia,[12] intra-

abdominal abscesses,[13] and other healthcare-

associated diseases, all with serious clinical 

effects.[14] Antibiotic resistance in Proteus species, 

especially through extended-spectrum β-lactamases 

(ESBLs), is a developing problem.[15] These 

enzymes, notably those encoded by the blaCTX-M 

gene, hydrolyze a broad variety of β-lactam 

antibiotics, including third-generation 

cephalosporins such as cefotaxime.[16] They are 

frequently co-expressed with resistance to non-β-

lactam antibiotics, further reducing treatment 
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options.[17] The blaCTX-M gene, which has become 

the most abundant ESBL gene globally, is typically 

found on plasmids that promote its rapid horizontal 

spread among bacterial populations, amplifying its 

clinical and epidemiological significance.[18,19] 

Rapid and precise detection of ESBL producers, 

particularly those containing blaCTX-M, is crucial 

for guiding successful antibiotic therapy and 

adopting infection control strategies.[15,20] The 

purpose of this study is to investigate the prevalence 

of the blaCTX-M gene among phenotypically 

confirmed ESBL-producing Proteus isolates in a 

tertiary care context using both conventional and 

molecular diagnostic approaches. 

 

MATERIALS AND METHODS 

 

Study Design and Setting: This cross-sectional 

study was conducted in the Department of 

Microbiology, Tirunelveli Medical College, Tamil 

Nadu, India, over a period of nine months 

(December 2015 – August 2016). 

Sample Collection and Identification: From a total 

of 1124 clinical isolates, 100 non-duplicate Proteus 

spp. isolates were chosen. Standard biochemical 

assays were used to identify the samples. All 

procedures were carried out with biosafety level 

measures. Prior to starting the trial, we received 

ethical clearance and informed consent. 

Genotypic Detection by Real-Time PCR 

DNA Extraction 

Genomic DNA was extracted using a silica-based 

spin column method.[21] DNA quality was confirmed 

and stored appropriately. 

PCR Amplification 

Real-time PCR experiment targeting the blaCTX-M 

gene was performed using the Helini Biomolecules' 

kit. Fluorescent probes (FAM channel) were utilized 

to detect targets, while internal controls (HEX 

channel) ensured reaction validity. PCR conditions 

included: 

• Taq activation: 95°C for 15 min 

• 40 cycles of: 

o Denaturation: 95°C for 20 sec 

o Annealing: 58°C for 30 sec 

o Extension: 72°C for 30 sec 

Positive, negative, and internal controls were 

included in each run. A sample was considered 

positive if fluorescence crossed the threshold before 

cycle 36 and internal control was valid. 

Statistical Analysis: All data collected during the 

study were entered and analyzed using SPSS version 

20.0. Descriptive statistics were used to summarize 

the data, including frequencies and percentages for 

categorical variables (e.g., age group, specimen 

type, risk factors, antibiotic exposure). For 

comparison between groups (e.g., ESBL vs. non-

ESBL isolates), Chi-square (χ²) test or Fisher’s exact 

test was used wherever applicable. A p-value < 0.05 

was considered statistically significant. 

 

RESULTS 
 

A total of 53 ESBL-producing Proteus isolates were 

identified phenotypically and tested molecularly. 

[Table 1] shows that Real-Time PCR identified the 

presence of the blaCTX-M gene in 48 isolates 

(90.5%), while only 5 isolates (9.5%) tested 

negative. 

 

Table 1: Detection of CTX-M gene by Real-Time PCR 

ESBL Confirmed Isolates CTX-M Amplified CTX-M Not Amplified 

 (N=53) 48 (90.5%) 5 (9.5%) 

 

Species and Age Distribution: Among ESBL 

producers, P. mirabilis was more prevalent (60.4%) 

compared to P. vulgaris (39.6%) [Table 2]. Age-

wise, the highest number of ESBL isolates was 

found in the 46–60 years group (37.7%), followed 

by the 61–75 years group (32%). This suggests 

higher prevalence in older adults [Table 3]. 

 

Table 2: Species-wise Distribution of ESBL-producing Proteus Isolates 

Species ESBL (n=53) % Non-ESBL (n=47) % 

P. mirabilis 32 60.4 31 66 

P. vulgaris 21 39.6 16 34 

 

Table 3: Age-wise Distribution of ESBL-producing Proteus Isolates 

Age (years) ESBL (n=53) % Non-ESBL (n=47) % 

≤15 6 11.3 9 19.1 

16–30 3 5.7 4 8.5 

31–45 5 9.4 9 19.1 

46–60 20 37.7 11 23.4 

61–75 17 32 11 23.4 

≥76 2 3.8 3 6.4 

 

Comparison of Phenotypic Tests with PCR: The 

E-test showed excellent agreement with PCR, with a 

sensitivity of 98%, specificity of 100%, PPV of 

100%, and NPV of 83%. It detected 47 true 

positives with no false positives [Table 4]. The 

Combined Disc Test (CDT) had a sensitivity of 

96%, specificity of 80%, PPV of 98%, and NPV of 

67% [Table 5]. The Double Disc Synergy Test 
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(DDST) had the lowest sensitivity at 69.8%, though 

its specificity remained 80%, indicating reduced 

reliability in detecting CTX-M producers [Table 6]. 

 

Table 4: Comparison of E-Test and PCR for CTX-M Gene Detection 

E-Test PCR Positive PCR Negative Total 

Positive 47 0 47 

Negative 1 5 6 

Total 48 5 53 

 

Table 5: Comparison of CDT and PCR for CTX-M Gene Detection 

CDT PCR Positive PCR Negative Total 

Positive 46 1 47 

Negative 2 4 6 

Total 48 5 53 

 

Table 6: Comparison of DDST and PCR for CTX-M Gene Detection 

DDST PCR Positive PCR Negative Total 

Positive 37 1 38 

Negative 11 4 15 

Total 48 5 53 

 

Infection Type and Risk Factor Analysis: [Table 

7] presents the distribution of ESBL and non-ESBL 

Proteus isolates across various infection types. 

Urinary tract infections (UTIs) were the most 

common among ESBL cases, accounting for 43.3% 

(23/53), followed by wound infections (26.4%), 

cellulitis (9.4%), abscesses (7.5%), and surgical site 

infections (SSIs) and diabetic foot infections (both 

5.7%). In contrast, non-ESBL isolates were more 

frequently associated with wound infections 

(38.2%) and diabetic foot infections (14.8%). 

Notably, SSIs were only found among ESBL 

isolates. [Table 8] highlights the association 

between catheterization and the presence of ESBL-

producing Proteus isolates in urinary tract 

infections. Among 23 ESBL-positive cases, 78.2% 

(18/23) were from catheterized patients, while only 

21.7% (5/23) were from non-catheterized 

individuals. In contrast, ESBL-negative isolates 

were equally distributed between catheterized and 

non-catheterized patients (50% each). Analysis of 

hospital stay duration revealed a strong association 

between extended hospitalization and ESBL 

production. Among the 53 ESBL-positive isolates, 

40 isolates (75.5%) were recovered from patients 

who had been hospitalized for 15 days or more, 

while only 13 isolates (24.5%) were from those with 

stays shorter than 15 days. In contrast, the majority 

of non-ESBL cases (76%) were associated with 

shorter hospital stays (<15 days). This difference 

was statistically significant (P < 0.05), indicating 

that prolonged hospitalization is a key risk factor for 

acquiring ESBL-producing Proteus infections 

[Table 9].  

[Table 10] illustrates the pattern of prior antibiotic 

exposure among patients infected with ESBL and 

non-ESBL producing Proteus isolates. A statistically 

significant association was observed with 

cephalosporin use, where 50 out of 53 ESBL-

positive cases (94.3%) had prior exposure compared 

to only 8 out of 47 non-ESBL cases (17%), 

indicating cephalosporin use as a major risk factor 

for the emergence of ESBL-producing strains (p < 

0.05). In contrast, prior exposure to other antibiotic 

classes—including aminoglycosides, 

fluoroquinolones, β-lactam/β-lactamase inhibitor 

(BL+BLI) combinations, and carbapenems—

showed no statistically significant difference 

between ESBL and non-ESBL groups. This finding 

underscores the importance of judicious 

cephalosporin use in clinical settings to mitigate the 

selection pressure driving ESBL emergence. 

 

Table 7: Infection-wise Categorization of ESBL Isolates 

Infection Type ESBL (n=53) % Non-ESBL (n=47) % 

UTI 23 43.3 14 29.8 

Wound infections 14 26.4 18 38.2 

Cellulitis 5 9.4 3 6.3 

Abscess 4 7.5 2 4.3 

Diabetic foot 3 5.7 7 14.8 

Respiratory infections 1 1.9 2 4.3 

SSI 3 5.7 0 0 

 

Table 8: ESBL in Catheterized vs Non-Catheterized Patients 

Risk Factor ESBL (n=23) % Non-ESBL (n=14) % 

Catheterized 18 78.2 7 50 

Non-catheterized 5 21.7 7 50 
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Table 9: Distribution of ESBL Isolates by Duration of Hospital Stay 

Duration of Hospital 

Stay 

ESBL (n = 53) (%) Non-ESBL (n = 

47) 

(%) Total 

< 15 days 13 24.50% 34 76.00% 47 

≥ 15 days 40 75.50% 13 24.00% 53 

Total 53 100% 47 100% 100 

 

Table 10: Antibiotic Exposure in Patients with ESBL and Non-ESBL Isolates 

Antibiotic Class ESBL (n = 53) Non-ESBL (n = 47) Total Significance 

Cephalosporins 50 8 58 Significant 

Aminoglycosides 3 21 24 Non-Significant 

Fluoroquinolones 1 10 11 Non-Significant 

BL+BLI 2 5 7 Non-Significant 

Carbapenems 3 2 5 Non-Significant 

 

DISCUSSION 
 

The study found that 90.5% of confirmed ESBL-

producing Proteus isolates had the blaCTX-M gene. 

This is consistent with the findings of Wang et al. in 

China (2011),[22] who observed a comparable 

prevalence. Mashwal et al, 2017,[23] found an even 

higher rate (97.4%) in Saudi Arabia, whereas 

Hassan et al 2013,[24] found 82%, indicating that 

CTX-M is currently the dominant ESBL gene in 

many parts of the world. These data demonstrate the 

continuous proliferation and dominance of plasmid-

borne CTX-M enzymes, which have displaced 

previous ESBLs such as TEM and SHV. However, 

Maninder Kaur et al. in Amritsar discovered just the 

TEM gene among Proteus ESBLs, suggesting 

spatial variation in gene distribution. Similarly, Ho 

P et al., 2005 reported a 70.2% CTX-M prevalence, 

lower than in this study.[25] Among the 53 ESBL-

positive isolates, five (9.5%) were PCR-negative for 

blaCTX-M, suggesting the presence of other ESBL 

genes like blaTEM or blaSHV, emphasizing the 

need for multiplex PCR in future surveillance. 

Comparison of Phenotypic Methods with PCR 

Phenotypic detection of ESBLs remains essential for 

routine screening. In our study, the E-test showed 

the highest concordance with PCR, with sensitivity 

and specificity of 98% and 100%, respectively. 

These results are consistent with Mohmid et al., 

2013 in Egypt (2009–2010), who found a sensitivity 

of 96.4% for CTX-M detection by E-test.[26] The 

added advantage of determining MIC values makes 

the E-test useful for guiding therapy, though its high 

cost limits routine use. The Combined Disc Test 

(CDT) also showed good performance with 96% 

sensitivity and 98% PPV, aligning with findings by 

Hisham et al., 2016 who reported 100% 

sensitivity.[27] The Double Disc Synergy Test 

(DDST) showed reduced sensitivity (69.8%) despite 

a high PPV (97.3%), likely due to factors like 

inappropriate disc spacing or degradation of 

clavulanate. Similar reduced sensitivity (66.6%) for 

DDST was reported by Hisham et al 2016.[27] The 

use of Modified DDST (MDDST), involving 

cefepime or piperacillin-tazobactam, may improve 

sensitivity in such cases. 

Prevalence and Risk Factor Analysis: Our study 

found that 53% of Proteus spp. were ESBL 

producers, consistent with Rudresh et al., in 

Karnataka (57%).[28] However, Jobayeret al 2017,[29] 

reported a higher rate (69.4%) among urinary 

isolates, whereas Balan, 2017 found only 19.4% 

ESBL prevalence, indicating variability based on 

geographic and temporal factors.[30] Species-wise, 

ESBL production was more common in P. mirabilis 

(60.4%) than P. vulgaris, which aligns with the 

results of Jog et al 2013.[31] Interestingly, some 

studies observed a reverse trend, suggesting 

institutional or regional variations. Age-wise, the 

46–60 years group had the highest ESBL burden 

(37.7%), consistent with Kiratisin et al., 2011 and  

Basavaraj et al 2011 who noted that increased 

hospitalization and invasive procedures among older 

patients contribute to this distribution.[32,33] 

Specimen-wise, the highest ESBL recovery was 

from urine (43.3%) and pus (52.8%). This mirrors 

findings by Dalela et al., 2012 in Rajasthan,[34] while 

Sasirekha et al. reported only 42.9% ESBLs in 

urinary isolates, again highlighting regional 

differences.[35] 

Catheterization, Antibiotic Exposure, and 

Hospital Stay 

In our study, 78.2% of ESBL-positive urinary 

isolates were from catheterized patients. This 

closely parallels the findings of Khan et al., (65.9%) 

and De Champs et al (69%).[36,37] The role of urinary 

catheters as a nidus for biofilm formation and 

persistent infection is well-established, especially 

with biofilm-forming organisms like P. mirabilis. 

Prior cephalosporin exposure was reported in 94.3% 

of ESBL cases, a statistically significant risk factor. 

Similar findings were reported by De Champs et al., 

where 75.4% had cephalosporin exposure.[37] 

Fluoroquinolones and other antibiotic classes did 

not show a significant association, underlining the 

selective pressure imposed specifically by 

cephalosporins. Hospital stay ≥15 days was 

significantly associated with ESBL isolation 

(75.5%). This is consistent with studies by Rupp, 

2003,[38] and De Champs et al,[37] all of whom 

highlighted prolonged hospitalization as a major risk 

factor due to increased exposure to invasive 

procedures and antimicrobials. 

Treatment and Control: Therapeutically, 

Imipenem showed the highest sensitivity (98%), 

followed by Piperacillin/Tazobactam (94.3%) and 
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Amikacin (72%), similar to the findings of Shenoy 

et al.[39] The resistance evasion properties of 

carbapenems, due to their trans-6 hydroxyethyl 

group, make them highly effective against ESBLs, 

though judicious use is vital to prevent further 

resistance development. Preventive strategies must 

emphasize hand hygiene, catheter care, 

antimicrobial stewardship, and infection 

surveillance, especially in high-risk wards like 

surgery and ICU. De Champs et al,[37] stressed these 

measures, noting their role in curbing ESBL spread 

in healthcare settings. 

 

CONCLUSION 
 

The present study highlights a high prevalence 

(90.5%) of the blaCTX-M gene among 

phenotypically confirmed ESBL-producing Proteus 

isolates, underscoring its dominant role in mediating 

resistance to third-generation cephalosporins. The 

majority of ESBL isolates were recovered from 

urinary samples and were associated with key risk 

factors such as prolonged hospital stay, prior 

cephalosporin use, and urinary catheterization. 

Among the diagnostic methods evaluated, the E-test 

showed the highest sensitivity and specificity in 

detecting CTX-M-mediated resistance, making it a 

reliable phenotypic alternative to PCR, though cost 

limits its routine use. The findings emphasize the 

importance of early detection of ESBL producers 

using both phenotypic and molecular methods to 

guide effective antimicrobial therapy. Additionally, 

the study reinforces the need for stringent infection 

control practices, antibiotic stewardship, and 

surveillance programs to contain the spread of 

resistant strains, particularly in high-risk hospital 

settings. 
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